Introduction Field Surveys and CADD Operations

Equipment, Applications And Case Studies

Field Surveys

- Mainly GPS Surveys
 Real Time Kinematics (RTK)
 Static Sessions
- Supplemental Total Stations Surveys
- 3-D Laser Scanning (LIDAR Technology)

GPS Surveys

- Continuous Signals from Satellites
- Signal Reception on Ground (Base and Rover)
- Differential Corrections through Radio
 Signals (x,y and z for each location)

The GPS Constellation

GPS Equipment Rover in Action Base is Set on a Control Station

Practical Considerations

- Mission Planning (Best Time for Data Collection, Satellite Configuration)
- Verification of Existing Control
- Data Analysis:

Reference Frame (State Plane Coordinate System)

Datums

Ground Adjustment Factors

Search for Control Stations

State Plane Coordinate System

■ Three Zones in Arizona:

West Zone

Central Zone

East Zone

Datums:

NAD 83/92 (Horizontal)

NAVD 88 (Vertical)

Ground Adjustment Factor

- Very Important, Brings Measured Grid Values to the Ground Surface
- Related to:

Elevation of Site

Projection on a Plane Surface

Total Station Surveys

- Optical Devices
- Used for Measuring Horizontal and Vertical Angles, and Slope Distances
- Replaced Transits, Theodolites, and EDM
- Used in Areas with Hard-To-Get GPS Signals (Under a Canopy)
- More Accuracy

Total Station Equipment

Field Surveys Applications

- Generation of Topographic Maps
 Digital Terrain Models
 Contour Maps
- Generation of Highway Alignments
 Horizontal and Vertical
- Definitions of Planimetric Features
 Structures and Buildings
 Utilities and Drainage Structures

Generation of DTM

Generation of Contour Maps

Generation of Highway Alignments

ANDY DEVINE TI

Definitions of Planimetric Features

ANDY DEVINE TI

Common Uses of Survey and CADD Data

- Assist Highway Designers in Selection of Best Routes
- Balancing Cut and Fill
- Hydrological and Drainage Studies
- Bridge Clearances
- Forensic Investigations (Accidents)
- Inventory (Guardrail, Highway Signs, Manholes, etc.)

Integration of Survey Data Into A GIS System

- Development of Database: Route, MP, TRACS Number, etc.
- Arcview GIS Graphical Presentation
- Easy Identification of Existing Mapping
- Immediate Assistance to ADOT Project Managers and Consultants

Summary of ADOT Surveying and Mapping Projects, 2000-Present

Zoom In To A Specific Area I-10 and US 191

